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Abstract

In this paper accurate and stable finite volume schemes for solving viscoelastic flow problems are presented. Two

contrasting finite volume schemes are described: a hybrid cell-vertex scheme and a pure cell-centred counterpart. Both

schemes employ a time-splitting algorithm to evolve the solution through time towards steady state. In the case of the

hybrid scheme, a semi-implicit formulation is employed in the momentum equation, based on the Taylor–Galerkin

approach with a pressure-correction step to enforce incompressibility. The basis of the pure finite volume approach is a

backward Euler scheme with a semi-Lagrangian step to treat the convection terms in the momentum and constitutive

equations. Two distinct finite volume schemes are presented for solving the systems of partial differential equations

describing the flow of viscoelastic fluids. The schemes are constructed to be second-order accurate in space. The issue of

stability is also addressed with respect to the treatment of convection. Numerical examples are presented illustrating the

performance of these schemes on some steady and transient problems that possess analytical solutions.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Over the last two decades or so, the finite element method has dominated the field of computational

rheology, upon which a vast body of literature exists on its application to the solution of viscoelastic flow

problems (see for example [17]). However, progress in terms of increased stability for moderate values of

the elasticity parameter has only been made possible by choosing appropriate mixed finite element ap-
proximation spaces and modifying the standard finite element method.
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The analysis of the well-posedness of the classical velocity–pressure formulation of the Stokes problem

is dependent on the satisfaction of a compatibility condition between the function spaces for velocity and

pressure. The satisfaction of the compatibility condition, which is sometimes referred to as the inf–sup or
Ladyzhenskaya–Babu�ska–Brezzi (LBB) condition, is necessary to ensure the existence of a unique solu-

tion for the pressure. For the three fields formulation of the Stokes problem in terms of velocity, pressure

and extra-stress an additional condition must be satisfied between the function spaces for velocity and

extra-stress to ensure a well-posed problem. Evidence for this was first discovered in a paper of Marchal

and Crochet [14] in which they showed that the velocity–pressure and velocity–pressure–stress formula-

tions of the Stokes problem generated different results unless the stress approximation was chosen cor-

rectly within the Galerkin formulation. For the upper-convected Maxwell (UCM) model, Fortin and

Pierre [7] have shown that a second compatibility condition has to be satisfied in order to ensure the
stability of the discretisation. A sufficient condition for stability is that the extra-stress space contains the

gradient of the velocity space. A consequence of an incompatible selection of approximation spaces is that

the velocity field may be polluted by spurious oscillations.

A theoretical analysis of standard Galerkin finite element methods has established that they are optimal

for self-adjoint problems in the sense that the discretisation error is bounded by the error in the best ap-

proximation of the solution by functions in the trial space. Therefore, standard Galerkin finite element

methods are ideal for the discretisation of diffusion problems. However, for convection-dominated con-

vection–diffusion equations, which assume the character of hyperbolic problems, the best approximation
property is lost. Furthermore, if the solution to the problem is nonsmooth, the Galerkin approximation

becomes polluted by spurious oscillations that propagate globally. Such oscillations are not a feature of the

actual solution itself. Oscillations appear when the value of the mesh P�eclet number is high or when the

finite element discretisation is too coarse to resolve sharp phenomena, such as boundary layers, and result

from a lack of stability of the standard Galerkin finite element approach, when used to solve convection-

dominated problems. The Galerkin finite element method may be stabilised using techniques such as SU or

SUPG, for example. However, this increased stability is gained often at the expense of deterioration in

accuracy.
Standard Galerkin methods behave in a similar fashion when the convective terms in the constitutive

equation dominate. The governing equations for fluids of Maxwell/Oldroyd type are known to be of mixed

type. For example, the quasilinear system of partial differential equations for the upper-convected Maxwell

model is of mixed elliptic–hyperbolic type [17]. Hence, optimality in the approximation via Galerkin

methods is destroyed for this class of problems. Some reformulations of the governing equation have

enhanced stability for finite element calculations. Among these strategies are the elastic-viscous split-stress

(EVSS) [20] and discrete EVSS (DEVSS) [9] formulations, which seek to enhance the elliptic character of

the momentum equation directly. Nevertheless, the finite element method does carry with it a heavy
computational overhead for complex problems. This may be conveyed through additional considerations,

such as, upwinding, or increased degrees of freedom associated with different formulations. Today, it is

fairly well-accepted that standard finite element methods may not be the most appropriate means by which

to resolve hyperbolic equations. The objective of the current study is to devise alternative procedures for

this class of problems, attending to deficiencies highlighted above, and identifying superior scheme prop-

erties as they arise.

The present hybrid scheme is based on a finite element discretisation of the conservation equations

and a finite volume discretisation of the constitutive equation. The finite element grid is used as a
platform for the finite volume grid from which control volumes are constructed. Each finite volume cell

is one of four subtriangles formed by connecting the mid-side nodes of the parent element (see Fig. 1(a)

in Section 3). This gives rise to a stable approximation for viscoelastic flow, close in philosophy to the

so-called 4� 4 stress subelements, introduced by Marchal and Crochet [14]. Here, fluctuation distri-

bution (FD) schemes are used to distribute the flux and source residuals to the vertices of each finite
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Fig. 1. Spatial discretisation: (a) FE-cell with four FV-subcells and (b) FV control volume for node l with median-dual-cell (shaded).
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volume triangle. FD schemes can be constructed to possess certain advantageous properties. For ex-

ample, on each control volume, all such schemes satisfy conservation of the convected quantity in

question. In addition, the linear FD scheme presented here, the low-diffusion B (LDB) scheme, is

linearity preserving (second-order accurate in space for linear solutions). High-order accuracy is
achieved through a consistent treatment of flux and source terms in the constitutive equation. Enhanced

stability, with respect to larger Weissenberg number attainment, is realised by inclusion of contributions

from flux and source terms, based on the median-dual-cell construct (MDC). This is paramount to

ensure stability in convergence for complex flows. A generalised finite volume nodal-update is proposed,

including additional consideration for time-term discretisation.

In contrast, the main features of the pure finite volume scheme correspond to those extracted on a

staggered grid arrangement for the unknowns and a semi-Lagrangian treatment for convection terms of

momentum and constitutive equations. The discrete equations are solved through a generalisation of the
SIMPLER scheme, enhanced to include the constitutive equation. The semi-Lagrangian component of the

computation utilises interpolation based on area-weighting. Second-order area-weighting is employed,

developed by Phillips and Williams [18] for conservation laws and implemented in the context of Newto-

nian computational fluid dynamics. A first-order variant of this scheme has already been established for

complex flows [19]. This scheme is inherently conservative, when applied to conservation laws, and leads to

a stable scheme. It circumvents the problems associated with high-order upwinding schemes, traditionally

introduced into some finite volume schemes.

There are two different forms of mesh arrangement proposed in conjunction with cell-centred finite
volume schemes for viscoelastic flows. On the first, all components of the extra-stress tensor are located at

the centre of mesh cells. This approach has been used by Yoo and Na [29], Sasmal [21] and Xue et al. [28].

This arrangement has the advantage of not having an unknown located at a cell vertex, that may corre-

spond to a singularity in the solution. Nevertheless, such a configuration of unknowns has the disadvantage

of requiring interpolation of shear stress values, for inclusion within the discrete representation of the

momentum equation. On the second grid arrangement, which is adopted in this paper, the shear stress is

located at the corners of mesh cells. The normal stress components are located at the same positions as the
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pressure, that is at the centre of mesh cells. Such an arrangement has been used by Bevis et al. [2], Gerritsma

[8] and Mompean and Deville [15].

Both finite volume schemes are validated on model steady and transient viscoelastic problems to dem-
onstrate spatial and temporal accuracy. The steady problem is a two-dimensional Cartesian test problem in

which the velocity field is specified. The transient problem is the classical problem of start-up Poiseuille flow

in a channel, in which the inflow conditions are known analytically, from Waters and King [25]. This is a

transient shear flow, so inertia is negligible. Here, one may attempt to reproduce the transient evolution of

velocity and/or stress, and compare the same against the corresponding theoretical solution.
2. Governing equations

The governing equations comprise the conservation equations of momentum and mass, together with the

rheological equation of state for an Oldroyd-B fluid. In dimensionless form, the equations of motion and

continuity read

Re
ou

ot

�
þ u � ru

�
¼ �rp þr � sþr � ðbðruþ ðruÞTÞÞ; ð1Þ
r � u ¼ 0; ð2Þ

where Re is the Reynolds number, p is an arbitrary isotropic pressure, s is the polymeric contribution to the

extra-stress tensor and u is the velocity vector. The parameter b, the solvent to total viscosity ratio, is

defined by

b ¼ k2
k1

; ð3Þ

expresses the ratio between the retardation and relaxation times of the fluid in question. The dimensionless

form of the Oldroyd-B model may be represented as

sþ Wes
5 ¼ 2ð1� bÞD; ð4Þ

where s
5
is the upper-convected derivative of s, defined by

s
5 ¼ os

ot
þ u � rs� ðruÞT � sþ s � ðruÞ; ð5Þ

the rate of deformation tensor D is defined by

D ¼ 1

2
ðruþruTÞ; ð6Þ

and We is the Weisenberg number. The Reynolds and Weissenberg numbers are defined by

Re ¼ qUL
g

; We ¼ k1U
L

; ð7Þ

where q is the density, g is the viscosity, U is a characteristic speed and L is a characteristic length. The

extra-stress tensor, T, is given by

T ¼ sþ 2bD: ð8Þ
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Note that b ¼ 0 corresponds to the UCM model. In this instance, there is no solvent contribution to the

extra-stress tensor and no diffusion term in (1). The governing equations become increasingly more resilient

to solution (stiffer) as values of b tend to zero.
The value of the parameter b is normally taken to be 1=9 in numerical simulations. This is the smallest

value of this parameter that ensures the shear stress is a monotonically increasing function of shear rate for

the Johnson–Segalman model, of which the Oldroyd-B model is a special case. Although this lower bound

on the value of b is not directly relevant for the Oldroyd-B model, it is the value often adopted in the

majority of numerical simulations. One notes that, in order to reflect quantitative comparisons with ex-

periments on materials such as Boger fluids, the value of b should be taken as at least 0.9.
3. Hybrid FE/FV schemes

The present hybrid finite element/volume method (FE/FV) is based upon a time-splitting semi-implicit

formulation. The latter consists of a Taylor–Galerkin scheme and a pressure-correction scheme. The

Taylor–Galerkin scheme (predictor–corrector) features a two-step Lax-Wendroff time-stepping procedure,

that is extracted via a Taylor series expansion in time [6,30]. The pressure-correction method handles the

incompressibility constraint to ensure second-order accuracy in time [10,13]. This formulation leads to a

three-stage structure, for each time-step cycle. The emerging discrete system can be expressed in matrix–
vector notation [24] as follows:

Stage 1a

2

Dt
AuðUnþ1=2 �UnÞ ¼ buðPn;Un;Tn;DnÞ;

2We
Dt

AsðTnþ1=2 �TnÞ ¼ bsðUn;Tn;DnÞ;

Stage 1b

1

Dt
AuðU� �UnÞ ¼ buðPn;Un;Unþ1=2;Tnþ1=2;Dnþ1=2Þ;

We
Dt

AsðTnþ1 �TnÞ ¼ bsðUnþ1=2;Tnþ1=2;Dnþ1=2Þ;

Stage 2

Dt
2
A2ðPnþ1 �PnÞ ¼ b2ðU�Þ;

Stage 3

2

Dt
A3ðUnþ1 �U�Þ ¼ b3ðPn;Pnþ1Þ:

ð9Þ

whereU;U�;P;T;D represent nodal values for velocity, non-solenoidal velocity, pressure, extra-stress and

velocity gradient, respectively. The superscript n denotes time level, and Dt the time step. The matrices

Au;As;A2;A3 correspond to system matrices for momentum, stress and stage 2, 3 equations, respectively,

with their rhs-equivalents in bk. For a pure FE implementation, all three stages are discretised via a

Galerkin formulation. This results in augmented Galerkin mass matrix–vector equations for stage 1

(momentum and stress constitutive equations) and stage 3 (incompressibility constraint). An efficient ele-
ment-by-element Jacobi scheme is invoked to solve for these stages. This is an extremely efficient scheme

that typically requires at most five iterations to attain the required convergence criterion. Note that a

consistent matrix is used in the predictor stage to preserve the accuracy of the scheme and that the diffusion
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term in the momentum equation is treated in a semi-implicit fashion to enhance stability. The pressure-

correction (stage 2), which satisfies a Poisson equation, is handled via a direct Choleski decomposition

procedure. Note that the reduction phase in this decomposition only has to be performed once.
For the hybrid FE/FV implementation, the momentum equations at stage 1 are treated in the same

manner, as described above for a pure FE approach. The same is true for stage 2 and stage 3. Only the

treatment of the stress constitutive equation differentiates the two approaches. In the hybrid scheme, As is

the identity matrix (as opposed to a sparse Galerkin form for pure FE). Consequently, the need to resolve a

matrix–vector equation is avoided. In addition, the rhs (bs) is discretised through a combination of cell-

vertex FD- and MDC constructs. These two characteristics of the hybrid method (identity As and

straightforward bs) reduce memory overhead and ensure a lower computational burden per time-cycle, over

the pure FE instance. The computational domain is discretised using six-noded FE-triangular cells, com-
posed of three vertices and three mid-side nodes (Fig. 1(a)). Velocity components are interpolated via

quadratic shape functions, based upon the six nodal-values of the FE-triangle. In contrast, pressure is

represented in a linear fashion, based on the FE vertices nodal-values alone. Stress interpolation (FV-

subcell) is of linear form, with an associated non-recovered stress gradient (non-conservative form). Note,

the finite volume tessellation is embedded within the parent FE-grid, by connecting the mid-side nodes of

each parent FE-cell (Fig. 1(a)). This generates four FV-triangular subcells, upon which stress components

are computed (see next section). The FV-subcell discretisation mitigates propagation errors, when recov-

ering stress nodal-values, as required by reference within the momentum equation approximation.
3.1. Cell-vertex finite volume stress discretisation

We appeal to cell-vertex FD schemes to split the discrete flux (R) and source (Q) residuals to the vertices

of each FV-subtriangle T . Originally, such upwinding-schemes were designed in the context of pure ad-

vection problems [5,11,12,16]. These FD schemes possess such properties as conservation, linearity pres-

ervation and/or positivity. In the viscoelastic context, our experience suggests that linearity preservation is

paramount to ensure accurate results. This is true in both transient and steady-state regimes. In contrast,
positivity has been observed to improve the quality of solution representation at short times, yet, at long-

times and towards steady state, the situation somewhat deteriorates. This indicates that positivity must be

handled with care in the presence of complex (solution-dependent) source terms. Hence, we retain the low-

diffusion B (LDB) FD scheme for the present hybrid fv implementation: a linear scheme, with the linearity-

preserving property. Detailed discussion on these issues can be found elsewhere [23].

To obtain the discrete flux and source terms, we isolate their continuous counterparts (R and Q) in the

stress constitutive equation, viz.

os

ot
¼ �RþQ; ð10Þ
R ¼ u � rs; ð11Þ
Q ¼ 1

We
½2ð1� bÞd � s� þ L � sþ s � LT: ð12Þ

Assuming appropriate spatial representation, integrating Eqs. (10)–(12) over suitable control volumes, for
each scalar stress component, s, provides the necessary time, flux and source discrete residuals:Z

Xl

os
ot

dX ¼
Z
XT

u � rsdXþ
Z
Xl

QdX: ð13Þ
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In the present FV implementation, we use two such control volumes: the FV-triangle T and the MDC 1

control volume (Fig. 1(b)). The triangle T provides the flux and source (RT , QT ) to be distributed via a given

FD strategy (here, LDB). In addition, we appeal to the MDC, which is uniquely identified with a given
node l within the FV-cell T . This introduces additional flux and source terms, (Rl

MDCT , Ql
MDCT ), respectively.

Judicious combinations of these different residuals leads to optimal stress nodal-update equations, as we

proceed to demonstrate.

Departing from pure-advection problems (RT only), a standard extension of cell-vertex FD-nodal-update

for node l appends source QMDC, via

X̂l

Dt
ðsnþ1

l � snl Þ ¼
X
8T

aTl RT þ
X
8T

Ql
MDCT : ð14Þ

Here,
P

8T represents all contributions from FV-cells (T ) surrounding node l. The flux RT is split between

the FV-subcell vertices through the FD coefficients aTl (see on for definition). We note, flux RT and source
Ql

MDCT terms are evaluated over different control volumes. As such, we denote this strategy as ‘‘inconsis-

tent’’. Indeed, this standard approach provides inaccurate results, even for simple model problems (steady

sink flow [4] and channel flow [24], with the Oldroyd-B model). As a consequence, a consistent approach

has been proposed by Wapperom and Webster [24]. With this formulation, both flux and source terms are

calculated over the same control volume, and distributed together, via factors aTl :

X̂l

Dt
ðsnþ1

l � snl Þ ¼
X
8T

aTl ðRT þ QT Þ: ð15Þ

The difference between (14) and (15) lies in the control volume area of reference for QT . In (15), the full

finite volume triangular cell is used to compute the contribution to the source term, whereas in (14) the

MDC is used. The consistent approach based on (15) has performed well. It has provided second-order
accurate results for the aforementioned steady-state problems: sink flow [4] and Cartesian test problems

[27]. Unfortunately, such schemes lack stability. For example, the consistent approach was unable to reach

a converged steady-state solution beyond We ¼ 1 for the channel flow [24], a pure shear flow. This was

alleviated by the addition of a consistent MDC contribution to Eq. (15) [24]. Aboubacar and Webster [1]

went further, with CT2-scheme, to include consistent area-weighting for fluctuation-distributioned and

MDC terms. This, in turn, enhanced stability significantly in complex flows (attaining levels of We � Oð3Þ
on highly refined meshes for the benchmark 4:1 contraction flow of an Oldroyd-B model fluid [1]).

Recently, Webster and coworkers [23] have generalised these formulations to resolve transient visco-
elastic flows. The starting point is to consider separately the FD and MDC contributions to the nodal

update. For a single FV-subcell Ti (area XTi ) and a given node l in Ti (with associated MDCl subarea XTi
l ),

these segregated contributions read

XTi

Dt
aTl Dsnþ1
� �

l
¼ aTl ðRT þ QT Þ on XTi ; ð16Þ

and

XTi
l

Dt
Dsnþ1
� �

l
¼ RMDCð þ QMDCÞl on MDCl: ð17Þ
1 MDC with zones are unique non-overlapping per node l, X̂l an area one third of the triangular cell over which it is constructed. A

MDC tessellation is equivalent to the Dirichlet tessellation/Voronoi region if the triangulation is of Delaunay form [26].
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Note that the left-hand side of (16) is the result of a computation over a full, yet single FV-subcell with

weighting factor aTl . Blending equations (16) and (17) with parameters dT and dMDC, and summing over all

FV-subcells surrounding node l yields the present CT3-scheme

XFD½ þ XMDC�
Dsnþ1

l

Dt
¼

X
8Tl

dTa
T
l bT|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

FD

þ
X

8MDCl

dTMDCb
l
MDC|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

MDC

; ð18Þ

where bT ¼ ðRT þ QT Þ, blMDC ¼ RMDC þ QMDCð Þl, XFD ¼
P

Tl
dTaTl XTi and XMDC ¼

P
MDCl

dTMDCX
Ti
l . Theo-

retically, dT and dMDC are mutually linked and complementarily exclusive. We note, if we recast Eq. (18) as

Dsnþ1
l

Dt
¼

P
8Tl dTa

T
l b

T

X1

þ
P

8MDCl
dTMDCb

l
MDC

X2

; ð19Þ

we obtain CT3-schemes by setting X1 ¼ X2 � XFD þ XMDC; alternatively, we can recover CT2-schemes 2 [1]

with the combination X1 ¼ XFD and X2 ¼ XMDC, whilst the original nodal-update (CT0) of [24] would

correspond to X1 ¼ X2 � X̂l. In [24], Wapperom and Webster defined dT ¼ n=3 if jnj6 3 and 1 otherwise,

and dMDC ¼ 1. There, n ¼ Weða=hÞ, with a the magnitude of the advection velocity per FV-cell and h the
square-root of the area of the FV-cell in question.

With the above parameter combinations, both CT2 and CT0 variants have proved inadequate in

tracking transient solution evolution in a start-up planar Poiseuille flow [23]. There, significant improve-

ment in transient accuracy was achieved with CT2-schemes by appealing to a dynamic dMDC factor, in the

form dMDC ¼ 1� dT . This simply recognises the complementary nature of the relative strength between flux

(better discretised through FD, dT -weight) and source terms (optimally represented via MDC, dMDC-

weight). The dependence of dT upon local averaged-velocity provides an estimate of the local flux-

magnitude. In contrast, the CT3-scheme is relatively insensitive to the dynamic setting of dMDC for this
shear flow problem, being well-reproduced with the full inclusion of MDC contribution (dMDC ¼ 1). This is

a clear indication of the superior consistency in the formal derivation of the CT3 scheme. Indeed, the CT3-

scheme encompasses consistent control-volumes for flux and source terms on the rhs, and consistent area-

weighting for the time-terms on the lhs of the equations.

In the present work, we propose an alternative definition of the dT -parameter, (dMDC ¼ 1� dT ) in the

form

dT ¼ jRT j=ðjRT j þ jQT jÞ; ð20Þ

so that, by default

dMDC ¼ jQT j=ðjRT j þ jQT jÞ: ð21Þ

This definition presents several advantages over the original Wapperom and Webster [24] form. First, it

appeals explicitly to the relative strength between local flux and source terms. Second, there is no need for

arbitrary truncation, since the hyperbolic function employed guarantees a monotonic decrease of dT from

unity to zero, in asymptotic fashion. Most importantly, such direct recourse to the ratio between flux and

source terms over the same control volume renders the dT -parameter independent of mesh size. It is in-

teresting to note that dT ¼ dMDC ¼ 1=2 when jRT j ¼ jQT j.
2 This form, with X1 ¼ XFD ¼
P

Tl
aTl XTi bears close resemblance to that proposed by Hubbard and Roe [11] for pure convection

flows.
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4. Semi-Lagrangian finite volume schemes

The finite volume method is generally applied to a system of equations written in conservative form.
Here we consider cell-centred finite volume methods for discretising the governing equations. Each of the

governing equations (1), (2) and (4) is written using the following general conservative form:

d
o/
ot

þ o

ox
u/h

�
� C

o/
ox

�
þ o

oy
v/h

�
� C

o/
oy

�
¼ S/ ð22Þ

for Cartesian coordinates, where d, h and C are constants, and / and S/ are functions that are defined in

Phillips and Williams [19]. Interpolation based on area-weighting techniques is used in the semi-Lagrangian

part of the computation. Phillips and Williams [19] employed a first-order area-weighting scheme in their

study of viscoelastic contraction flows. A second-order scheme was developed by Phillips and Williams [18]

for conservation laws. In the present paper this scheme is applied for the first time to a problem in com-

putational non-Newtonian fluid mechanics.
4.1. The computational grid

A reference grid (which remains fixed in space for all time) is placed on top of the computational domain

and a control volume is associated with each unknown on the grid. In this paper the sides of each control

volume are aligned with the coordinate axes. Each component of Eq. (22) is integrated over an appropriate

control volume. In the finite volume formulation mass and momentum are conserved over every control

volume and therefore over the whole computational domain.

A staggered grid is used in which the dependent variables are located at different points as shown in
Fig. 2. This mesh ensures that the solution is not polluted by the spurious pressure modes which may be

present on collocated meshes unless care is taken. However, this arrangement does introduce a shear stress

variable at the corner singularity which requires special treatment.
Fig. 2. Location of the variables on the finite volume grid. The shear stress is located at the vertices of the control volumes.
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4.2. Discretisation

An operator splitting technique is used to discretise the governing equations in time. The convection
terms in the momentum and constitutive equations are treated using a semi-Lagrangian technique based on

a particle tracking method. This involves the solution of the convection problems

ou

ot
þ u � ru ¼ 0; ð23Þ
os

ot
þ u � rs ¼ 0; ð24Þ

at each time step to obtain intermediate values of the velocity (u�) and extra-stress (s�). This is followed by

the solution of an unsteady generalised Stokes problem to determine the pressure and the new velocity

Re
unþ1 � u�n

Dt

� �
� br2unþ1 þrpnþ1 ¼ r � sn; ð25Þ
r � unþ1 ¼ 0; ð26Þ

and the solution of an algebraic problem to update the stress

We
snþ1 � s�n

Dt

� �
� jnsnþ1 � snþ1ðjnÞT þ snþ1 ¼ 2ð1� bÞDn; ð27Þ

where j is the transpose of the velocity-gradient tensor.
4.3. Treatment of convection

The treatment of the convection terms in (25) or (27) using a semi-Lagrangian method was described in

Phillips and Williams [19]. The reader is referred to this article for further details. However, the principal

components of this method are summarised here for the sake of completeness.

Consider the mesh associated with one of the dependent variables, / say, where / ¼ u; v; sxx; sxy or syy .
Particles that arrive at the four corner points of a control volume, Ci;j, associated with / at time t ¼ tnþ1

were located at the vertices of some cell at time t ¼ tn, which may be deformed. This cell is approximated by

a quadrilateral C�n
i;j , formed by joining the departure points by straight line segments (see Fig. 3).

Associated with each cell Ci;j at each time tn ¼ nDt, we introduce an approximation, denoted by /n
i;j, to

the cell average of /ðx; y; tnÞ, i.e.,

/n
i;j �

1

DxiDyj

Z Z
Ci;j

/ðx; y; tnÞdxdy; ð28Þ

where

Dxi ¼ xiþ1=2 � xi�1=2; Dyj ¼ yjþ1=2 � yj�1=2:

Thus, there are two stages to the numerical calculation at each time step:

(1) The departure points at time t ¼ tn of each grid point on the reference grid are determined by using a

particle following transformation. This initial-value problem is solved numerically at each grid point using

Euler’s method, for example.



*

Ci,j

Ci,j

Fig. 3. The formation of the departure cell C�
i;j using the particle-following transformation to determine the vertices of this cell.
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(2) The cell average values of /�n are determined from a knowledge of the cell average values of / at time

t ¼ tn on the reference grid. These values are then inserted in Eqs. (25) and (27) in order to determine the

values of velocity, pressure and stress at the new time step. This approximation is generated by means of an

area-weighting technique that uses a weighted sum of the values of /n over the control volumes on the

reference grid which overlap with cell C�n
i;j (see Fig. 4). Scroggs and Semazzi [22] developed a first-order area-

weighting scheme that ensured global conservation of the scheme in a discrete sense. Phillips and Williams

[18] generalised this to a second-order area-weighting scheme for determining the value of /�n
i;j , in the form

/�n
i;j ¼

1

DxiDyj

X
I ;J2Z

xI;J
i;j ð/n

I ;J

"
� anI ;J�xI;J � bn

I ;J�yI;J Þ þ
Z Z

C�n
i;j\CI;J

anI ;J x
�

þ bn
I ;J y

�
dxdy

#
; ð29Þ

where xI ;J
i;j is the common area between C�n

i;j and CI;J , i.e., the area of CI ;J \ C�n
i;j , Z is the set of indices of all

the points in the computational domain and ai;j and bi;j are central difference approximations to the fluxes.

On a uniform grid we have
Ci–1,j

C*

Ci,j

Ci–1,j–1 Ci,j–1

i,j

Fig. 4. A deformed control volume and the reference grid.
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ani;j ¼
/n

iþ1;j � /n
i�1;j

2Dx
;

bn
i;j ¼

/n
i;jþ1 � /n

i;j�1

2Dy
:

ð30Þ

The point ð�xi;j; �yi;jÞ is defined by

�xi;j ¼
1

DxiDyj

Z Z
Ci;j

xdxdy;

�yi;j ¼
1

DxiDyj

Z Z
Ci;j

y dxdy:
ð31Þ

This guarantees the global conservation properties of the scheme irrespective of the choice of approxi-

mation for the fluxes. If Ci;j is convex this point will always lie in its interior. On a rectangular grid this is

just the geometric centre of the cell.
5. Model Oldroyd-B flow problem

To test the spatial accuracy of the finite volume schemes described in this paper, a two-dimensional
Cartesian model problem is solved on the unit square ½x0; x1� � ½y0; y1� with the prescribed velocity field given

by

u � ðx;�yÞ: ð32Þ

Structured uniform meshes are used for both schemes. For the pure finite volume scheme quadrilateral

(rectangular) finite volumes are used. For the hybrid scheme, a triangular FE-tessellation is constructed.

Approximations are obtained on a series of meshes in order to determine the spatial accuracy of the

schemes. Boundary conditions for the stress must be specified on the inflow boundaries of the domain

x ¼ x0 and y ¼ y1. The initial conditions are taken as quiescent. We compute results for two domains
obtained by changing the position of the top and bottom boundaries. These generate quite different flows.

The first domain is ½1; 2� � ½1; 2� and the second is ½1; 2� � ½0:1; 1:1�. Accuracy is measured by computing the

maximum pointwise-errors in the approximations at the nodes of the finite volume mesh.

The component form of the Oldroyd-B equation with the above velocity field is

We x
osxx
ox

�
� y

osxx
oy

�
¼ 2ð1� bÞ þ ð2We� 1Þsxx;

We x
osxy
ox

�
� y

osxy
oy

�
¼ �sxy ;

We x
osyy
ox

�
� y

osyy
oy

�
¼ �2ð1� bÞ � ð2Weþ 1Þsyy :

The true solution of this initial-value problem is of the form

si ¼ aixciþdi yci þ bi; ð33Þ

where the stress is represented as ðsxx; sxy ; syyÞ � ðs1; s2; s3Þ, and the parameters in these representations are

given by
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b1 ¼ � 2ð1� bÞ
ð2We� 1Þ ; d1 ¼ 2� 1

We
;

b2 ¼ 0; d2 ¼ � 1

We
;

b3 ¼ � 2ð1� bÞ
ð2Weþ 1Þ ; d3 ¼ �2� 1

We
;

for We < 1=2. This is a condition that emerges on the normal stress component, sxx, similar to that observed

in steady uniaxial extension. For the pressure to be compatible, the following relationships must hold

between the coefficients ai and ci,

a1 ¼ � a2c2
c1 þ d1

; c1 ¼ c2 � 1;

a3 ¼ � a2ðc2 þ d2Þ
c3

; c3 ¼ c2 þ 1:

The coefficients a2 and c2 can be chosen arbitrarily; we choose them to be unity.

We compare convergence behaviour of both finite volume approximations, in two domains described

above, for We ¼ 0:4 and We ¼ 0:1, with b ¼ 1=9. The time step was chosen to be Dt ¼ 0:002 and the al-

gorithms were terminated at steady-state when the relative maximum difference between the approxima-

tions at two successive time steps was less than 10�10. The choice of time step was based on temporal
stability and accuracy considerations. The stability considerations are based on the satisfaction of a CFL

constraint. In addition the time step has to be sufficiently small to ensure that the temporal error is

minimised. Based on equitable number of stress degrees of freedom, comparable finite volume meshes for

the stress components are used as the basis of comparison of the two schemes (two triangular subcells of the

hybrid scheme form a single rectangle in the pure FV scheme). For example, subsuming two triangles

within a single rectangle, a 2n� 2n mesh for the FE/FV scheme corresponds to an n� n finite element

mesh. The relative errors, EðhÞ, in the components of the extra-stress tensor in the infinity norm are pro-

vided in Tables 1–4 for We ¼ 0:4 and We ¼ 0:1 over domains 1 and 2, where

EðhÞ ¼ ksi � shi k1
ksik1

: ð34Þ

Domain 2 is included, since in this geometry, the velocity is almost parallel to the bottom boundary. This

situation can give rise to a deterioration in accuracy for some schemes. The order of approximation of the

schemes is estimated using the formula

p ¼ lnðEðhÞ=Eðh=2ÞÞ
ln 2

; ð35Þ
Table 1

Mesh dependence of EðhÞ for the model Oldroyd-B problem in domain 1 for We ¼ 0:4

Mesh FE/FV SLFV

sxx sxy syy sxx sxy syy

8� 8 5.34� 10�5 4.20� 10�4 6.16� 10�4 6.01� 10�4 2.01� 10�4 3.60� 10�4

16� 16 1.05� 10�5 1.10� 10�4 1.68� 10�4 1.11� 10�5 4.35� 10�5 7.81� 10�5

32� 32 1.87� 10�6 2.31� 10�5 3.94� 10�5 2.01� 10�6 8.85� 10�6 1.62� 10�5

64� 64 2.94� 10�7 4.09� 10�6 7.61� 10�6 3.35� 10�7 1.75� 10�6 2.72� 10�6



Table 2

Mesh dependence of EðhÞ for the model Oldroyd-B problem in domain 2 for We ¼ 0:4

Mesh FE/FV SLFV

sxx sxy syy sxx sxy syy

8� 8 3.56� 10�5 1.30� 10�3 6.94� 10�4 5.43� 10�5 9.98� 10�5 4.80� 10�4

16� 16 5.23� 10�6 3.15� 10�4 1.79� 10�4 9.85� 10�6 2.33� 10�5 9.97� 10�5

32� 32 7.09� 10�7 7.82� 10�5 4.69� 10�5 1.65� 10�6 5.09� 10�6 1.95� 10�5

64� 64 1.03� 10�7 1.90� 10�5 1.22� 10�5 2.65� 10�7 1.06� 10�6 3.71� 10�6

Table 3

Mesh dependence of EðhÞ for the model Oldroyd-B problem in domain 1 for We ¼ 0:1

Mesh FE/FV SLFV

sxx sxy syy sxx sxy syy

8� 8 1.04� 10�3 1.24� 10�2 1.01� 10�2 4.58� 10�4 8.63� 10�4 9.85� 10�4

16� 16 3.97� 10�4 6.17� 10�3 5.59� 10�3 7.99� 10�5 2.15� 10�4 2.34� 10�4

32� 32 1.09� 10�4 1.89� 10�3 1.89� 10�3 1.31� 10�5 4.91� 10�5 5.41� 10�5

64� 64 2.23� 10�5 4.16� 10�4 4.49� 10�4 2.08� 10�6 1.04� 10�5 1.22� 10�5

Table 4

Mesh dependence of EðhÞ for the model Oldroyd-B problem in domain 2 for We ¼ 0:1

Mesh FE/FV SLFV

sxx sxy syy sxx sxy syy

8� 8 7.93� 10�4 9.99� 10�3 9.82� 10�3 3.88� 10�4 9.91� 10�4 7.35� 10�4

16� 16 2.45� 10�4 2.59� 10�3 3.18� 10�3 9.12� 10�5 2.49� 10�4 1.82� 10�4

32� 32 5.03� 10�5 7.05� 10�4 9.17� 10�4 1.77� 10�5 5.83� 10�5 4.15� 10�5

64� 64 8.32� 10�6 1.52� 10�4 1.99� 10�4 3.01� 10�6 1.22� 10�5 9.51� 10�6
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and information obtained on the finest two meshes, that is, we take h ¼ 1=32. Following this procedure

yields the data gathered in Table 5. The order of convergence of both FE/FV and SLFV schemes is two at

least, in fact, lying between two and three. We observe that there is a degradation in accuracy for both

schemes across all stress components on domain 2, with the exception of sxx for the SLFV scheme. This
reflects the fact that this is a more severe problem setting, with sharper aspects of the solution approxi-

mating the boundaries. In Figs. 5 and 6 for We ¼ 0:4, the behaviour of EðhÞ is displayed as function of h, for
the two schemes and each of the stress components, in domains 1 and 2, respectively. In Fig. 5 we observe
Table 5

Estimates of the order of spatial convergence of the FE/FV and SLFV schemes for We ¼ 0:4 and We ¼ 0:1 in domains 1 and 2

We Domain FE/FV SLFV

sxx sxy syy sxx sxy syy

0.4 1 2.67 2.50 2.37 2.58 2.34 2.57

0.4 2 2.78 2.04 1.94 2.64 2.26 2.39

0.1 1 2.29 2.18 2.07 2.65 2.24 2.15

0.1 2 2.60 2.22 2.20 2.56 2.26 2.13
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almost O(h2:5) convergence for all components for both SLFV and FE/FV schemes. The level of errors for

sxx are the same for both schemes, whilst the levels of error are lower for the remaining components with the

SLFV in contrast to the FE/FV scheme. Note, that the absolute value of sxx is greater than that for the

other components in this particular problem. Moreover, the analytical solution for sxx is independent of y.
In Fig. 6 the level of error for sxx is different for the two schemes. The same trends are observed for the other

stress components as those shown in Fig. 5. Here, the asymptotic behaviour of the approximation error for
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M. Aboubacar et al. / Journal of Computational Physics 199 (2004) 16–40 31
sxx is O(h2:78) and Oðh2:64) for FE/FV and SLFV, respectively. To proceed with further comparisons we

select a single representative stress component, syy (the more severe). In Fig. 7 we compare the behaviour of

the error EðhÞ for the stress component syy . The level of error for this component is lower for the SLFV

approximation than for the FE/FV approximation. This can be explained by the particular properties of the

grids used in the two schemes for the approximation of the stress components: subtriangles in the FE/FV

scheme and a staggered rectangular grid in the SLFV scheme.
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Fig. 8. Dependence of the error in Tyy on h in domain 2.
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To examine the behaviour of the approximation error with respect to the Weissenberg number we

contrast the behaviour of the error EðhÞ against h in Fig. 8 for the two schemes with We ¼ 0:1 and We ¼ 0:4,
over domain 1 and again selecting the stress component syy . We observe that the level of accuracy for
We ¼ 0:1 is higher than for that We ¼ 0:4. This is due to the fact that the absolute value of syy for We ¼ 0:1 is
larger than that for We ¼ 0:4. Once again, the desired O(h2) convergence is obtained.
6. Unsteady Poiseuille flow in a planar channel

Consider the transient flow development of an Oldroyd-B fluid in a planar channel, commencing from a

state of rest when a constant pressure-gradient is applied. This is a physically realistic problem when in-
stigated from quiescent conditions. For the Oldroyd-B fluid, an analytical solution to this problem has been

derived by Waters and King [25]. For example, the velocity components can be written in the form

uðy; tÞ ¼ U AðyÞ
"

� 32
X1
n¼1

sinðNyÞ
N 3

exp

�
� aN t
2S1

�
GN ðtÞ

#
ð36Þ

and vðy; tÞ ¼ 0, where AðyÞ ¼ 4ð1� yÞy, N ¼ ð2n� 1Þp and

GN ðtÞ ¼ cosh
bN t
2S1

� �
þ 1þ N 2ðS2 � 2S1Þ

bN

� 	
sinh

bN t
2S1

� �
; ð37Þ
S1 ¼
We
Re

; S2 ¼ bS1; aN ¼ 1þ S2N 2; bN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ S2N 2Þ2 � 4S1N 2

q
: ð38Þ

The stress components are given by

sxx ¼ 2ReCxyðS1; yÞ A0ðyÞ exp
�"
� t
S1

�
� 32

X1
n¼1

cosðNyÞ
N 2

IN ðS1; tÞ
#

þ 2ReA0ðyÞð1� bÞ S1A0ðyÞ
"

� 32
X1
n¼1

cosðNyÞ
N 2

HN ðS1; tÞ
#
� 64ReA0ðyÞð1� bÞ

S1

X1
m¼1

cosðMyÞ
M2

JMðS1; tÞ

þ 2048Reð1� bÞ
S1

X1
n;m¼1

cosðNyÞ
N 2

cosðMyÞ
M2

KNMðS1; tÞ þ CxxðS1; yÞ exp
�
� t
S1

�
; ð39Þ
sxy ¼
ð1� bÞ

S1
S1A0ðyÞ

"
� 32

X1
n¼1

cosðNyÞ
N 2

HN ðS1; tÞ
#
þ CxyðS1; yÞ exp

�
� t
S1

�
; ð40Þ
syy ¼ 0; ð41Þ

where M ¼ ð2m� 1Þp, and Cxy and Cxx are time-independent functions defined by the requirement that sxy
and sxx are zero at t ¼ 0, respectively. Details of the other coefficients are given in Carew et al. [3]. The

boundary conditions on the velocity at inflow and outflow are taken to be the transient expressions de-

termined by Waters and King [25]. Similarly, the analytical expressions for the extra-stress components are

imposed at inflow. No-slip boundary conditions are imposed at the channel walls. The transient devel-

opment of the stress can exhibit both overshoots and undershoots as it evolves towards the steady-state
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solution. The problem has a smooth solution, being a pure transient shear flow, with a shear boundary

layer at the channel walls and no shear along the centreline. There are no geometric singularities in the flow.

Here, interest lies solely in determining the quality of the numerical solutions, evolved over time, and in
detecting sensitivity to numerical instability for the algorithms under consideration.

For b ¼ 1=9, the analytical solution displays overshoots and undershoots in the streamwise velocity

component and the stress components, as We is increased from a value of zero to unity. As We is increased

beyond unity, the velocity overshoot increases, whilst velocity undershoot and stress overshoot/undershoot

are damped. Once We reaches 100 there is no velocity undershoot or stress overshoot/undershoot. Also of

interest is the relative times taken for velocity and stress components to settle down to their steady-state

values. For We < 1, velocity and stress components take approximately the same time to achieve such

states. However, for WeP 1, normal stress components take longer to attain their steady-state values as
compared with velocity components and shear stress. Reproducing these features is a severe test of the time

accuracy of any transient algorithm, given the different time-scales involved.

The unstructured 10� 10 mesh employed for the hybrid FE/FV scheme, see Fig. 9, teases out the nuances

of FD-upwinding and identifies sampled internal and boundary nodes for reference. The SLFV scheme is

validated on a 10� 10 rectangular equivalent, but structured mesh. The accuracy of the numerical solutions

is judged from the ability to capture transient overshoots and undershoots (present in the analytical so-

lution), alongside long-term steady-state response. The performance of the two schemes is investigated for

We ¼ 1 and for two values of b. When b ¼ 1=9, the solvent contribution to the extra-stress tensor is small
compared with that of the polymeric contribution. In this instance the analytical solution displays over-

shoots and undershoots in the velocity and extra-stress. When b ¼ 1=2, the solvent and polymeric con-

tributions to the extra-stress tensor are equally weighted. In this case, the axial velocity possesses a single

overshoot before settling down to its steady state value. There is no overshoot in extra-stress. The time step

is chosen to be Dt ¼ 10�2.

With b ¼ 1=9, both schemes predict closely the transient response of the axial component of the velocity

at a point, interior to the domain (see Fig. 10). The SLFV scheme slightly underpredicts the first peak and

even more slightly overpredicts the first trough of the analytical solution. The relative error for the FE/FV
scheme reaches its maximum at the second peak (1%) declining to 0.1% at the third peak whilst capturing

the first peak and long-time behaviour within 0.04% of the analytical solution.

The transient stress also exhibits both overshoots and undershoots as it evolves towards a steady-state.

At the boundary point, the maximum relative error for the normal stress Txx is less than 4% (corresponding

to first peak), which reduces to 0.3% at the steady state. Both schemes underpredict the analytical solution

until around a time of t ¼ 6 (see Fig. 11). At the interior point the hybrid FE/FV scheme overpredicts

the first peak (less than 4% of the analytical solution), and then, underpredicts the solution, (see

Fig. 12). However, the approximation remains in phase with the analytical solution. The SLFV scheme
Node 39

Node 62

Fig. 9. Finite element 10� 10 mesh.
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Fig. 10. Comparison of the transient development of the horizontal velocity component u with the finite volume approximations at an

interior sampling point for We ¼ 1 and b ¼ 1=9.
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Fig. 11. Comparison of the transient development of the normal stress Txx with the finite volume approximations at a boundary

sampling point for We ¼ 1 and b ¼ 1=9.
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underpredicts the first peak, overpredicts the first trough, lagging slightly out-of-phase, until agreeing with

the analytical solution at around t ¼ 5.

For b ¼ 1=2, both schemes are observed to capture the transient response accurately (see Figs. 13–15).

The SLFV scheme slightly underpredicts the peak in the axial component of the velocity. For the

normal stress component, Txx, the SLFV approximation lags slightly behind the analytical solution,
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Fig. 12. Comparison of the transient development of the normal stress Txx with the finite volume approximations at an interior

sampling point for We ¼ 1 and b ¼ 1=9.
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Fig. 13. Comparison of the transient development of the horizontal velocity component u with the finite volume approximations at an

interior sampling point for We ¼ 1 and b ¼ 1=2.
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whilst the hybrid FE/FV remain in phase. In Figs. 16–19, we display the behaviour of the shear stress

for b ¼ 1=9 and b ¼ 1=2 at boundary and interior sampling points. Identical sample points are selected

as for the normal stress component. The FE/FV approximation matches the analytical solution
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Fig. 14. Comparison of the transient development of the normal stress Txx with the finite volume approximations at a boundary

sampling point for We ¼ 1 and b ¼ 1=2.
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Fig. 15. Comparison of the transient development of the normal stress Txx with the finite volume approximations at an interior

sampling point for We ¼ 1 and b ¼ 1=2.
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throughout the time period, albeit with a small undershoot at the first peak (see Figs. 16 and 17). This

is a result of the correspondence between the linear nature of the shear stress and the linear inter-

polation of the stress approximation employed in the FE/FV scheme. There is also an improvement in
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Fig. 16. Comparison of the transient development of the shear stress Txy with the finite volume approximations at a boundary sampling

point for We ¼ 1 and b ¼ 1=9.
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Fig. 17. Comparison of the transient development of the shear stress Txy with the finite volume approximations at an interior sampling

point for We ¼ 1 and b ¼ 1=9.
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the SLFV approximation in terms of better phase-matches compared with the corresponding plots for

the normal stress at the same locations.

Finally, we note that the analytical solution is smoother for b ¼ 1=2 than for b ¼ 1=9. For example, the

horizontal component of velocity possesses a single peak before decaying monotonically to its steady state
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Fig. 18. Comparison of the transient development of the shear stress Txy with the finite volume approximations at a boundary sampling

point for We ¼ 1 and b ¼ 1=2.
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Fig. 19. Comparison of the transient development of the shear stress Txy with the finite volume approximations at an interior sampling

point for We ¼ 1 and b ¼ 1=2.
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value (see Fig. 10) and the shear stress behaves monotonically (see Figs. 18 and 19) for b ¼ 1=2. Ac-

cordingly, the quality of the approximations is improved compared with the corresponding behaviour for

b ¼ 1=9.
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7. Conclusions

In this paper we have presented and analysed two contrasting finite volume strategies for solving vis-
coelastic flow problems. The schemes have been constructed to be second-order in space and this has been

demonstrated by means of a model problem, based on the Oldroyd-B constitutive equation. Stability for

the hybrid FE/FV scheme (reaching high Weissenberg number solutions) has been achieved by a combi-

nation of a subgrid for the stress and a consistent treatment of flux and source terms in the momentum

equation using fluctuation distribution and median-dual-cells. Stability for the pure finite volume schemes

has been achieved using a semi-Lagrangian treatment of the convective terms in the constitutive equation in

which a high-order area-weighting technique is used to evaluate contributions at the previous time step. The

transient behaviour of such schemes has been investigated by considering the unsteady Poiseuille flow of an
Oldroyd-B fluid in a planar channel. The performance of both FV-implementations on these case studies

provides us with the confidence to apply them to complex flows of viscoelastic fluids. At the next stage, one

may take advantage of the independent scheme derivations to combine ideas from one scheme into another.

So, for example, source term treatment may be adopted from hybrid FE/FV within SLFV, to progress to

unstructured meshing. Likewise, semi-Lagrangian ideology may replace or complement flux term treatment

within the hybrid FE/FV scheme.
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